
Bilkent University

CS353 Database Systems
Social Network for Check-In - CheckMe

Project URL: http://bit.ly/CS353DB

Final Report

Ahmet	Çandıroğlu,	Albjon	Gjuzi,	Aurel	Hoxha,	Eniselda	Tusku	

Supervisor:	Fuat	Basık	

	

	

	

May 14, 2018

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of
the requirements of the Database Systems, course CS353.

	

Department	of	Computer	Engineering

2

Table	of	Contents	
	

1.	 Project Description 4	
2.	 Individual Contributions 4	
3.	 Final E/R Model 5	
4.	 Final List Of Tables 7	

4.1.	 Country 7	
4.2.	 City 7	
4.3.	 Category 7	
4.4.	 Venue 8	
4.5.	 Feature 8	
4.7.	 Privilege 9	
4.8.	 UserType 9	
4.9.	 Type_Privilege 9	
4.10.	 User_Table 10	
4.11.	 Prefers 10	
4.12.	 Message 10	
4.13.	 Follows 11	
4.14.	 Suggestion 11	
4.15.	 PlanToVisit 11	
4.16.	 HasFavorite 12	
4.17.	 CheckIn 12	
4.18.	 Photo 12	
4.19.	 CheckInPhoto 13	
4.20.	 VenuePhoto 13	
4.21.	 Review 13	
4.22.	 Comment 14	
4.23.	 User_Like 14	

5.	 Implementation Details 15	
6.	 Advance Database Feature 16	

6.1.	 Views 16	

3

6.2.	 Stored Procedures 16	
6.3.	 Profile Reports 17	

7.	 User Manual 18	
7.1	 Introduction 18	
7.2	 Login 18	
7.3	 Homepage 19	
7.4	 User Profile 19	
7.5	 Change User Profile 19	
7.6	 Change Password 20	
7.7	 Following 20	
7.8	 List of Messages 20	
7.9	 Send Messages 21	
7.10	 Venue 21	
7.11	 Edit Venue 22	
7.12	 Rating 22	
7.14	 Lists 23	

4

1. Project Description
For the purpose of this course we have designed and developed a database for a “Social
Network for Check-ins”. As the name suggests, the fundamental idea of our system is to
discover many interesting places easily and to allow the user to socialize with other people.
The locations are placed into categories and subcategories in order to facilitate the
searching process. After the user has chosen a certain venue he is able to “check in”, rate,
write a review, leave a suggestion and mark that review as a favorite or as “plan to visit”.
Together with this, each user has his own profile in which he can store different
information regarding to his preferred locations and being in a social network he will be
able to communicate and share them with his friends by following them, being followed
back and exchanging messages. The system will be accessed by 2 different types of users:
simple users and managers. Simple users will be able to create their accounts, to search for
different venues and places, check-in, rate the locations, and update their profile. Managers
will be able to update information regarding the venue they are managing such as hotel,
restaurant etc., with photos and different information. However, they will not be able to
remove the comments made by users, in order to guarantee transparency. Users are also
able to complete their profile and add preferences to it which will enable for him to see in
his newsfeed information related to his preferences.

2. Individual Contributions

Regarding the development of the project all the group members have worked together
exchanging ideas and commonly contributing to make the system fully functional and
including all the necessary features. However, individual members are focused mainly as
follows:
Ahmet Çandıroğlu: Worked on building the user profile involving all of its features also
building the venue with all its requirements. Also updated the uploading process of the
photo, creating different folders for different users.
Aurel Hoxha: Worked on developing the registration, login, uploading user photos and also
took care of the managing venue page and changing password of the user using the current
one.
Eniselda Tusku: Worked on developing the communication between different users
building the messages and also building the following and followers page and the favorite
venues page.
Albjon Gjuzi: Worked on making possible for the user to edit his profile. For the venue was
responsible for venue registering process and also editing the venue profile.
The explore page was built in the end by all the group members.

However it is important to emphasize that the contributions of each member are not limited
to the above list as we interactively helped each other on their parts and worked together to
overcome the challenges of implementation.

5

3. Final E/R Model

According to assistant feedback and our own insight we revised the E/R Model as follows:

• The userID was changed from int to varchar to make it more efficient.
• We removed the reviewID from checkin table and added checkinID into review.
• Into messages table we added the date of the messaged.
• Added venueTel attribute into venue table to have it as information.
• The photo is not saved anymore as blob but as varchar.
• The table was changed from friends into follows.
• Into follows table the sinceDate was added.
• Messages table was fixed by adding the sent_date.
• A constrain was added for the city in user_table to reference city table.
• Into usertype table the type_groupid was removed since we realized it was

unnecessary.

The E/R diagram was completed adding the following modification:

• State table was removed from the database since it is used mostly only in US.
• Photo was removed as an weak entity and it became a new table.
• VenuePhoto table was added in order to keep some photos for the venue.
• CheckinPhoto table was added to keep the photos of a particular checkin.
• Photo entity was added as e weak entity to CheckIn. The reason for this is because it

is in user preferences whether or not to merge a photo with the CheckIn.

6

UserUser

VenueVenueCountryCountry CityCity

CategoryCategory

FeatureFeature

CheckInCheckIn

PhotoPhotoReviewReview

CommentComment

SuggestionSuggestion

PrivilegePrivilege

UserTypeUserType

usernameusername

user_firstNameuser_firstName

user_lastNameuser_lastName

user_passworduser_password

user_birthdateuser_birthdate

user_genderuser_gender

user_profileTypeuser_profileType

user_createduser_created

user_picuser_pic

follows
follower_idfollower_id

followed_idfollowed_id

messages
reciever_idreciever_id

sender_idsender_id

venueIDvenueID

venueTelvenueTel

venueNamevenueName

venueAddressvenueAddress

 venueStreet venueStreet

 street_number street_number

 street_name street_name

venueCreatedvenueCreated

venueModifiedvenueModified

venueStatusvenueStatus

venue_open_timevenue_open_time

venuePicvenuePic

countryIDcountryID

countryNamecountryName

countryCodecountryCode

cityIDcityID

cityNamecityName

cityStatuscityStatus

countryStatuscountryStatus

country_city

city_venue

categoryIDcategoryID

categoryNamecategoryName

categoryDesccategoryDesc

categoryCreatedcategoryCreated

categoryModifiedcategoryModified

categoryStatuscategoryStatus

featureNamefeatureName

feature_venue

featureDescfeatureDesc

PlanToVisit

cat_venue

age()age()

checkin_IDcheckin_ID

checkIn_datecheckIn_date

photo_IDphoto_ID

photo_urlphoto_url

review_IDreview_ID

review_descreview_desc

review_ratingreview_rating

HasFavorite

comment_IDcomment_ID

comment_textcomment_text

comment_datecomment_date

Manages

user_checkin

venue_checkin

checkinPhotoreview_checkin

comment_checkin

suggestion_IDsuggestion_ID

suggestion_textsuggestion_text

suggestion_datesuggestion_date

Prefers

user_comment

venue_suggest

user_suggest

venueDescvenueDesc

venue_close_timevenue_close_time

privilegeIDprivilegeID

privilege_nameprivilege_name

privilege_descprivilege_desc

privilege_valueprivilege_value

typeIDtypeID

typeNametypeName

type_isActivetype_isActive

type_privilege
user_type

user_emailuser_email

user_cityIDuser_cityID

user_isActiveuser_isActive

user_lastoginuser_lastogin

message

sent_date

since_date

venuePhoto

user_like

7

4. Final List Of Tables

4.1. Country
Relational Mode:
Country(countryID, countryName, countryCode, countryStatus)
Candidate Keys:
{(countryID, countryName, countryCode)}
Foreign Keys:
Normal Form:
BCNF

4.2. City
Relational Mode:
Country(cityID, cityName, cityStatus, countryID)
Candidate Keys:
{(cityID, cityName)}
Foreign Keys:
countryID REFERENCES country(countryID)
Normal Form:
BCNF

4.3. Category
Relational Mode:
Category(categoryID, categoryName, categoryDesc, categoryCreated,

 categoryModified, categoryStatus)
Candidate Keys:
{(cityID, categoryName)}
Foreign Keys:
Normal Form:
BCNF

8

4.4. Venue
Relational Mode:
Venue (venueID, venueName, venueDesc, venueTel, street_number, street_name,
cityID, venueCreated, venueModified, venueStatus, venueOpenTime,
venueCloseTime, venuePic, managerName)
Candidate Keys:
{(venueID, venueName)}
Foreign Keys:
cityID REFERENCES city(cityID)
managerName REFERENCES user_table(username)
Normal Form:
BCNF

4.5. Feature
Relational Mode:
Feature(VenueID, featureName, featureDesc)
Candidate Keys:
{(venueID, featureName)}
Foreign Keys:
venueID REFERENCES venue(venueID)
Normal Form:
BCNF

4.6. Cat_Venue
Relational Mode:
Cat_Vanue(categoryID, venueID)
Candidate Keys:
{(categoryID, venueID)}
Foreign Keys:
categoryID REFERENCES category(categoryID)
venueID REFERENCES venue(venueID)
Normal Form:
BCNF

9

4.7. Privilege
Relational Mode:
Privilege(privilegeID, privilege_name, privilege_desc, privilege_value)
Candidate Keys:
{(privilegeID, privilege_name)}
Foreign Keys:
Normal Form:
BCNF

4.8. UserType
Relational Mode:
UserType(typeID, typeName, type_isActive)
Candidate Keys:
{(privilegeID, typeName)}
Foreign Keys:
Normal Form:
BCNF

4.9. Type_Privilege
Relational Mode:
Type_Privilege (typeID, privilegeID)
Candidate Keys:
{(typeID, privilegeID)}
Foreign Keys:
typeID REFERENCES usertype(typeID)
privilegeID REFERENCES privilege(privilegeID)
Normal Form:
BCNF

10

4.10. User_Table
Relational Mode:
User_Table (username, user_firstName, user_lastName, user_email,
user_password, user_birthdate, user_pic, user_gender, user_cityID,
user_profileType, user_created, user_isActive, user_lastlogin)
Candidate Keys:
{(username, user_email)}
Foreign Keys:
user_cityID REFERENCES city(cityID)
user_profileType REFERENCES userType(typeID)
Normal Form:
BCNF

4.11. Prefers
Relational Mode:
Prefers(username, categoryID)
Candidate Keys:
{(username, categoryID)}
Foreign Keys:
username REFERENCES user_table(username)
categoryID REFERENCES category(categoryID)
Normal Form:
BCNF

4.12. Message
Relational Mode:
Message (sender, receiver, message, sent_date)
Candidate Keys:
{(sender, receiver)}
Foreign Keys:
sender REFERENCES user_table(username)
receiver REFERENCES user_table (username)
Normal Form:
BCNF

11

4.13. Follows
Relational Mode:
Follows (follower, followed, since_date)
Candidate Keys:
{(follower, followed)}
Foreign Keys:
follower REFERENCES user_table(username)
followed REFERENCES user_table (username)
Normal Form:
BCNF

4.14. Suggestion
Relational Mode:
Suggestion(suggestionID, suggestion_text, suggestion_date, venueID, username)
Candidate Keys:
{(suggestionID)}
Foreign Keys:
venueID REFERENCES venue(venueID)
username REFERENCES user_table (username)
Normal Form:
BCNF

4.15. PlanToVisit
Relational Mode:
PlanToVisit(username, venueID)
Candidate Keys:
{(username, venueID)}
Foreign Keys:
username REFERENCES user_table (username)
venueID REFERENCES venue(venueID)
Normal Form:
BCNF

12

4.16. HasFavorite
Relational Mode:
HasFavorite(username, venueID)
Candidate Keys:
{(username, venueID)}
Foreign Keys:
username REFERENCES user_table (username)
venueID REFERENCES venue(venueID)
Normal Form:
BCNF

4.17. CheckIn
Relational Mode:
CheckIn (checkinID, checkin_date, username, venueID)
Candidate Keys:
{(checkinID)}
Foreign Keys:
username REFERENCES user_table (username)
venueID REFERENCES venue(venueID)
Normal Form:
BCNF

4.18. Photo
Relational Mode:
Photo (photoID, photoUrl)
Candidate Keys:
{(photoID)}
Foreign Keys:
Normal Form:
BCNF

13

4.19. CheckInPhoto
Relational Mode:
CheckInPhoto (checkinID, photoID)
Candidate Keys:
{(checkinID, photoID)}
Foreign Keys:
checkinID REFERENCES checkin (checkinID)
photoID REFERENCES photo (photoID)
Normal Form:
BCNF

4.20. VenuePhoto
Relational Mode:
VenuePhoto (venueID, photoID)
Candidate Keys:
{(venueID, photoID)}
Foreign Keys:
venueID REFERENCES venue (venueID)
photoID REFERENCES photo (photoID)
Normal Form:
BCNF

4.21. Review
Relational Mode:
Review (reviewID, checkinID, review_rating, review_desc)
Candidate Keys:
{(reviewID)}
Foreign Keys:
checkinID REFERENCES checkin (checkinID)
Normal Form:
BCNF

14

4.22. Comment
Relational Mode:
Comment (commentID, comment_text, comment_date, username, checkinID)
Candidate Keys:
{(commentID)}
Foreign Keys:
username REFERENCES user_table (username)
checkinID REFERENCES checkin (checkinID)
Normal Form:
BCNF

4.23. User_Like
Relational Mode:
User_Like(userID, checkinID)
Candidate Keys:
{(userID, checkinID)}
Foreign Keys:
username REFERENCES user_table (username)
checkinID REFERENCES checkin (checkinID)
Normal Form:
BCNF

15

5. Implementation Details

The implementation of our system involved the following characteristics:

Environment: As our working environment we used “PHP My Admin” in which we tested
the functionality of all the pages we built. Different members used different IDE such as:
ATOM, PYCHAM, SUBLIME TEXT, to implement their corresponding parts.

Framework: In order to support the development of the website we used Bootstrap 4.1.1 as
a basis for building the site and making it user-friendly.

Languages: To develop our system we relied on languages such as:

• Html and CSS in order to build the visual aspect of each page.
• PHP to achieve the connection with the database.
• SQL to build the database.
• Additionally, few JavaScript functions embedded in HTML were utilized for

transitional error or confirmation messages.

During our work we faced several implementation challenges in different stages of
implementation. The way in which we generally overcame these challenges was by
conveying excessive online research among several related platforms and consulting each
difficulty with the group members. Specifically, some of the problems were:

• In the process of uploading a photo in the user profile we were not able to make it
functional by implementing it inside another page, in this case in the user profile
page. In order to avoid this problem, we tried different ways and ultimately decided
to implement the page uploading in an individual page which was later used by all
the pages that needed it.

• Another issue that we had was with accessing the folders containing user
information since it was not working properly and created problems in creating and
editing the user profile. To solve this problem, we implemented it in such a way that
each user has its own folder in the system.

16

6. Advance Database Feature
6.1. Views
Manager Suggestion View
This view restricts the manager to access user names that sent suggestions.

create view manager_suggestion as
select suggestionID, suggestion_text, suggestion_date, venueID
from suggestion

Manager Review View
This view restricts the manager to access user names that wrote the reviews.

create view manager_review as
select reviewRating, reviewDescription, checkin_date, venueID
from checkin natural join review

6.2. Stored Procedures		

The most important operations on our system will be adding venues and check-ins at
venues. Therefore, we can use some stored procedures to avoid using long queries all the
time.

This procedure will be used to add check-ins to the database.
Create Procedure addCheckin

(@checkinID int, @checkin_date date, @userID int, @venueID int, @reviewID
int)

As
Begin
 Insert Into checkin

Values (@checkinID, @checkin_date, @userID, @venueID, @reviewID)
End

This procedure will be used to add messages to the database.
Create Procedure addVenue

(@userID1 int, @userID2 int, @message varchar(500), @sent_date date)
As
Begin
 Insert Into messages

Values (@userID1, @userID2, @message, @sent_date)
End

17

This procedure will be used to add venues to the database.
Create Procedure addUser

(@userID int, @user_firstName varchar(50), @user_lastName varchar(50), @user_email
varchar(100), @user_password varchar(30), @user_birthdate date, @user_pic blob,
@user_gender character(1), @city varchar(50), @user_profileType int, @user_created date,

 @user_isActive int, @user_lastlogin time, @typeID int)
As
Begin
 Insert Into user_table

Values (@venueID, @venueName, @venueDesc, @street_number, @street_name,
 @venueCreated, @venueModified, @venue_open_time, @venue_close_time,
 @venueStatus int, @cityID, @managerID, @cityID, @managerID)

End
This procedure will be used to display the number of friends in user’s profile
Create Procedure countFriends as
Begin

(SELECT U.userID, count(*)
FROM user_table U, friends F
WHERE U.userID = F.userID1
GROUP BY U.userID)

End

6.3. Profile Reports		

Total number of check-ins uploaded by each user:
SELECT C.userID, count(*)
FROM checkin C
GROUP BY C.userID;

Total number of suggestions sent from each user:
SELECT S.userID, count(*)
FROM suggestion S
GROUP BY S.userID;

Total number of venues for each category
SELECT CV.categoryID, CV.categoryName, count(*)
FROM cat_venue CV
GROUP BY CV.categoryID, CV.categoryName;

Total number of planToVisit venues from each user
SELECT P.userID, count(P.venueID)
FROM PlanToVisit P
GROUP BY P.userID;

18

7. User Manual
7.1 Introduction

Welcome to CheckMe, the most awesome and simple platform for finding different locations and
sharing your thoughts regarding them with all your online community. In order to make things
easier for you we have created this guide to help you get to know with this new and exciting
platform!

7.2 Login

The first thing a user will be redirected to when opening the website will be the login page. If you
are a first-time user than you will have to go to the registration page and create an account. The
creation of an account requires basic information such as: your name, surname, email address,
password, birthdate, city and account type.

Congratulations! After this step you are now officially a member of the “CheckMe” Community. If
you wish to open you account in another time you will be directed to the Login Page. All
registered users can login into the system through this simple Login page. In order to login the
unique email- address and password determined during registration are required. The validity of
both password and email address is checked before user is logged in. After pressing the Log in
button user is redirected to his homepage.

19

7.3 Homepage

In this page a user is able to see information related with his followers such as the venues they
have liked or written a review for. In this way you will be updated with all the new information of
your “CheckMe” community.

7.4 User Profile

The user profile contains all the necessary information regarding individual users. There you will
be able to see relevant information about yourself and others can be able to learn more about
you and they can follow and send a message to you. In the profile you will also have the list of
the check-ins that you have done together with the number of followers and following that you
possess.

7.5 Change User Profile
This specific page is done in order to update the profile of the user. However some of the
information such as gender, birthday are not allowed to be changed once the user has register.

20

7.6 Change Password
Change Password Page will consist of fields that are necessary to change the user’s password.
Such fieldsinclude “currentPassword”, “newPassword”, “confirmPassword”.

7.7 Following
In the profile the user can access the list of his followers together with the information such as,
the date of follow, option to unfollow , send message and status if the following is mutual.

7.8 List of Messages
Message page will consist of all messages that the user has exchange with different users.
From this page the user can be redirected to messages with a particular user or to a new
message window.

21

7.9 Send Messages
When the user decides to send a message to another user, the message window will include
automatically the name of user, name of the receiver and also will have a field where the user
can type his message.
Pic of send message

7.10 Venue
Venue page displays all the information about a specific Venue and Review’s regarding that
venue. When opening the Venue profile the user can Check In, Review and give feedback
(suggestions) to the venue. In addition user can include this venue in his “PlanToVisit” list.

22

7.11 Edit Venue
When a manager open Edit Profile of a Venue he/she will have the opportunity to change the
information of the venue.

7.12 Rating
When a manager checks the reviews that the users have written for the venue under
management the manager will have the opportunity to check all the reviews the users have
written.

23

7.13 Explore

The main idea of the project is to search for a venue based on your preferences. This will be
achieved from Explore Page where the user will be able to refine the search based on different
buttons and characteristics of the venue looking for.

7.14 Lists
User has the opportunity to view lists of his preferences such as “Favorite Venues” and the
venues that he/she has marked as “PlanToVisit”. The lists can be updated by user by removing
existing venues in each of them

